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Despite the new ideas were inspired in medical treatment by the rapid advancement of three-dimensional (3D) printing
technology, there is still rare research work reported on 3D printing of coronary arteries being documented in the literature. In this
work, the application value of 3D printing technology in the treatment of cardiovascular diseases has been explored via
comparison study between the 3D printed vascular solid model and the computer aided design (CAD) model. In this paper, a new
framework is proposed to achieve a 3D printing vascular model with high simulation. �e patient-speci�c 3D reconstruction of
the coronary arteries is performed by the detailed morphological information abstracted from the contour of the vessel lumen. In
the process of reconstruction which has 5 steps, the morphological details of the contour view of the vessel lumen are merged
along with the curvature and length information provided by the coronary angiography. After comparing with the diameter of the
narrow section and the diameter of the normal section in CAD models and 3D printing model, it can be concluded that there is a
high correlation between the diameter of vascular stenosis measured in 3D printing models and computer aided design models.
�e 3D printing model has high-modeling ability and high precision, which can represent the original coronary artery appearance
accurately. It can be adapted for prevascularization planning to support doctors in determining the surgical procedures.

1. Introduction

With the fast development of the society, China’s basic
medical care has been well improved. However, the prev-
alence and mortality of cardiovascular diseases (CVD) in
residents is still rising, and which in recent years rapidly

grow for the low-aged and low-income citizens. Since 2004,
the rate of hospitalization of cardiovascular diseases is much
faster than the growth rate of GDP, greatly increasing the
social burden [1–3]. CVD mainly include cerebrovascular
disease, coronary heart disease, arrhythmia, and heart fail-
ure. CVD has become the largest proportion of residents
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suffering from all disease; 2 out of every 5 deaths are due to
cardiovascular diseases. Since 2009, CVD mortality rate in
rural regions has exceeded and continues to be above urban
levels. In 2015, the CVDmortality rate of rural residents was
298.42/100,000, of which the heart disease mortality rate was
144.79/100,000, the cerebrovascular disease mortality rate
was 153.63/100,000, and the urban residents’ CVDmortality
rate was 264.84/100,000, including heart disease death. 1e
rate was 13.661/100,000, and the mortality rate of cere-
brovascular disease was 128.23/100,000. In 2015, the pro-
portion of CVD deaths in rural and urban residents
accounted for 45.01% and 42.61%, respectively. 1us, it is
imperative to early diagnose cardiovascular disease [1].

1ere are two methods being widely used in the de-
tection of cardiovascular diseases, namely, OCT technology
and coronary angiography. Optical coherence tomography
(OCT) technology is an imaging technique that uses near-
infrared light to display the associated tissue structure in the
blood vessels without radiation, high resolution, and high-
detection sensitivity [4, 5]. OCTcan perform high-resolution
cross section tomography images of biological tissue en-
dometrium and provide a resolution ten times higher than
intravascular ultrasound, so it is also called optical biopsy.
On the basis of the first-generation time domain OCT (TD-
OCT) system, scientists developed frequency domains with
faster scanning speeds by varying the frequency of light to
obtain different depth tissue imaging OCT (frequency do-
main OCT, FD-OCT) system [6]. X-ray coronary angiog-
raphy is an arterial angiography method using an
angiography machine. 1e procedures are as follows: first,
through a special cardiac catheter percutaneous puncture, a
special catheter is inserted through the right iliac artery or
the lower extremity femoral artery, and the descending aorta
is retrogradely to the ascending aorta root. 1en, the left or
right coronary artery is inserted and injected with the
contrast agent. Eventually, the coronary artery and mor-
phological are visible. X-ray coronary angiography can
clearly distinguish the location and morphological charac-
teristics of vascular lesions, quantitatively determine and
classify narrow vascular segments, and determine the cir-
culation state of lateral branches [7]. However, the tech-
nology itself has certain limitations. Firstly, it can only
display the projection of the lumen of the blood vessel and
not the cross-sectional information of the tube wall, which
may cause the doctor to miss the diagnosis; secondly, it
cannot provide information on the morphology and
properties of plaques, and it is thus impossible to develop
interventional procedures for specific plaque information;
lastly, because of the uneven filling of the contrast agent in
the blood vessels, it is easy for the doctor to underestimate
the degree of lumen narrowing.

In response to the limitations of the above two tech-
nologies, we introduced 3D printing technology. 1ree-di-
mensional (3D) printing technology, also known as additive
manufacturing technology, has advantages of fast, direct-
ness, and digitalize. [8] Since its appearance in the 1980s, 3D
printing technology has developed rapidly in this century
and has been widely used in the fields of automobile,
aerospace, and medical. It can be applied to enhance the

diagnosis and treatment of complex cardiovascular diseases,
allowing doctors to visually evaluate the spatial geometry of
the entire vessel [9]. 1e appearance of rapid prototyping
techniques (RPT) greatly made the computer technology
move forward, and 3D printing is one type of the RPT [10]. A
rapid 3D prototyping process consists of many steps. 1is
technique needs to obtain a series of figures, such as
computed tomography (CT) images, transform the figures
into a format compatible with a 3D printer, and then print
the model [11]. Some surgeries can be planned using three-
dimensional computer aided design and manufacturing (3D
CAD/CAM) software. 1e 3D virtual planning is performed
in PROPLAN software and exported into 3-matic software
to design and then use the biocompatible material to print
[12]. Shaheen et al. and Rengier and Mehndiratta used
dedicated postprocessing algorithm to extract a spatial
model from image data sets and export to machine-readable
data [12, 13].

At present, there are few research studies on 3D printing
of coronary arteries. 1is paper explores the 3D printing of
blood vessels based on optical coherence tomography and
coronary angiography. Angiographic images and optical
coherence tomography images of 8 patients with coronary
artery stenosis before and after implantation of stents were
collected. 1e vascular model of the eight patient models
were modeled with the proposed 3D reconstruction tech-
nique by merging the morphological details of the contour
view of the vessel lumen and the curvature and length in-
formation provided by the coronary angiography. After
outputting the STL file format, the built-in coronary STL
format file is then imported into the 3D printer and the STL
format file is converted into a machine code Gcode that can
be recognized by the 3D printer. Finally, the 3D printer
performs coronary artery model printing operation. 1e
main contribution of the paper is to originally complete the
3D printing of specific blood vessel models with high cor-
relations between the diameters of the vascular stenosis
segments extracted from the 3D reconstruction model.

Compared with the traditional scheme, our new ap-
proach has advantages of high-quality simulation, applica-
bility in clinical usages, and the convenience of preoperative
planning.

2. Methods

1e overall flowchart of our proposed framework with 5
steps is shown in Figure 1, where 5 steps are mainly con-
tained.1e original images are preprocessed and the used for
reconstructing the 3D solid model of the blood vessel. And
then the 3D point clouds are extracted from biodegradable
stent, which are introduced to the reconstruction of the 3D
solid model of the bioabsorbable stent. Finally, the 3D solid
model of the blood vessel after implantation of the bio-
absorbable stent is reduced through feature subtraction.

2.1. Individualized 4ree-Dimensional Reconstruction of
Coronary Arteries. 1e individualized 3D reconstruction of
the coronary arteries is performed by merging the
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morphological details of the contour view of the vessel lu-
men and the curvature and length information provided by
the coronary angiography. We first performed a three-di-
mensional reconstruction with coronary angiography con-
taining information on vessel curvature and high-resolution
intravascular optical coherence tomography. 1e recon-
struction steps include blood vessel image acquisition and
preprocessing, reconstruction of a 3D vascular solid model,
extraction of a 3D point cloud of a biodegradable stent,
reconstruction of a 3D solid model of the biodegradable
stent, [14] and reduction of the feature after subtraction of
the implanted bioabsorbable stent of the 3D solid model of
blood vessels [15]. 1e following are a specific description of
the various steps of the reconstruction.

2.1.1. Step 1: Acquire and Preprocess the Vascular Image.
1e central line of vascular structure was extracted
according to the coronary angiography image. According to
the number of framing pictures of the intravascular OCT
image, evenly divide the center line to obtain a series of
points and set a plane perpendicular to the center line at each
point.

2.1.2. Step 2: Rebuild the 4ree-Dimensional Vascular Solid
Model. Each frame is placed in the corresponding plane in
order from the IVOCT image sequence, the contour of the
lumen is identified, and the image is removed after the
contour is obtained. Repeat the above steps for each image
until the skeleton corresponding to the contour of the entire
vessel lumen is achieved, select the contours of each vascular
cavity, perform a sweep operation along the centerline of the
coronary angiography, and smooth the surface of the 3D
blood vessels to eventually produce a vascular solid model
[16]. Figures 2(a)–2(c)represent the process of modeling a
3D model of blood vessels.

2.1.3. Step 3: Extract the 4ree-Dimensional Point Cloud of
Biological Absorbable Stent. For the vessel segment
implanted with the stent column, firstly, according to the
automatic stent extraction algorithm proposed in Figure 3,
each stent column point is displayed at the position of the
IVOCT per frame. When all the scaffold points are auto-
matically marked, a discrete 3D scaffold point cloud is
obtained. 1e position of the point cloud is the position of
the scaffolding column in the IVOCT chart of each frame.
1e geometrical space structure of the support can be ap-
proximately obtained by the support point cloud.

2.1.4. Step 4: 4ree-Dimensional Solid Model for Recon-
struction of Biological Absorbable Stents. After building the

bracket point cloud, in order to restore the mesh structure of
the bracket, we also need to manually connect the bracket
columns to construct the spatial structure of the biological
absorbable stent in the vascular cavity. According to the
prior information, we know that the bracket is made up of
annular structures, each of which is connected by a scaffold
[17, 18]. According to the observation, we found that the
distance of every 3 to 4OCTframes is the thickness of amesh
bracket ring, and the structure of the stent-ring can be
generated by sequentially connecting the point cloud of the
stent column in the adjacent 3 to 4 frames of IVOCT by a
curve. Since the bracket is thick, we first calculate the di-
ameter of the bracket column according to the OCTpicture.
1en, a new plane is established on the plane perpendicular
to the ring curve of the bracket, centered on the intersection
of the surface and the plane, and a circle is drawn in diameter
with the thickness of the precalculated bracket column. For
each annular structure of the stent, the circle is swept along
the curve of the stent ring to create a ring-shaped stent body
having a thickness. 1e three-dimensional point cloud and
its 3Dmodel of the bracket are illustrated in Figures 4(a) and
4(b).

2.1.5. Step 5: 4ree-Dimensional Solid Model of Blood
Vessels after Reduction and Implantation of Biologically
Absorbable Stents upon Feature Subtraction. For the vessel
segment implanted in the stent, we subtract the feature of the
generated vascular entity from the bioabsorbable stent en-
tity, forming a stent groove on the modeled vascular entity to
highlight the stent structure, and restore the real 3D vascular
cavity structure with the stent placed [19]. A 3D vascular
model of an implanted biological absorbable stent with a
corrugated surface is shown in Figures 5(a) and 5(b).

2.2. Exploration of 4ree-Dimensional Printing Specific Vas-
cularModel. 1e application of 3D printing in medicine has
changed the limitation that traditional 3D models can only
be virtual displayed on computers. Doctors can make more
accurate preoperative planning and improve the success rate
of surgery by analyzing the anatomical structure charac-
teristics of lesions through personalized medical model
entity. At present, clinicians mainly design the operation
plan based on CT, MRI, angiography, or 2D vascular lumen
images such as optical coherence tomography, vascular
ultrasound images, and clinical experience. However, these
imaging techniques can only present two-dimensional field
of vision on the screen and cannot allow doctors to visualize
the spatial geometry of the whole blood vessel evaluation
[20]. 3D printing technology can be applied to the diagnosis
and treatment of complex cardiovascular diseases. 1e 3D
model of coronary artery can facilitate physicians to

Vessel image
acquisition

and preprocessing 

3D solid model
reconstruction
of blood vessel 

3D point clouds
extraction from

bioabsorbable stent 

3D solid model
reconstruction of

bioabsorbable stent 

3D solid model of blood vessel
after feature subtraction and

bioabsorbable stent implantation 

Figure 1: 1e flowchart of our proposed framework on patient-specific coronary artery 3D printing.
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Figure 3: Flowchart of the automatic stent extraction algorithm.

(a)

(b)

(c)

Figure 2: (a–c) Fusion IVOCT and CAG images of vascular three-dimensional model reconstruction.
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(a)

(b)

Figure 4: (a) Biodegradable scaffold point cloud extraction. (b) 1ree-dimensional model reconstruction.

(a)

(b)

Figure 5: A three-dimensional model of a bioabsorbable stent with a corrugated surface (a) obtained by subtracting the three-dimensional
model of the vessel from the stent (b).
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intuitively touch and measure the pathological vascular
segments, so as to determine the key steps of operation,
select the appropriate size of vascular branches, and for-
mulate the best surgical plan, which can reduce the possi-
bility of uneven stent adherence and hence greatly improve
the effectiveness of interventional surgery [21, 22].

1e individual geometry of lesions in each branch of
coronary artery varies greatly and the treatment scheme is
more complex, especially in the selection of stents and
implantation location of interventional surgery. In this
paper, we attempt to explore the spatial geometry of the
coronary artery by using 3D printing technology. 1rough
individualized 3D reconstruction of the coronary artery, we
have successfully obtained 3D vascular model structure. 1e
structure of the 3Dmodel is expected to change the situation
in which clinicians perceive coronary artery lesions based on
their own experience in the past. Quantitative experimental
results also show that the 3D printing technology has high
visualisation quality and the effectiveness of the 3D model of
the coronary artery in individualized coronary intervention
surgery and preoperative planning.

3. Experiment

In this study, we collected angiographic images and optical
coherence tomography images of 8 patients with coronary
artery stenosis before and after implantation of stents. 3D
modeling of the vascular model of 8 patients was performed

using the proposed 3D reconstruction technique and the
STL file format was output.

By analyzing the advantages and disadvantages of
common 3D printing technology, this study selects a 3D
printer based on melting deposition molding technology to
carry out the research on the geometrical morphological
structure of the coronary artery. Considering that the cor-
onary artery vascular model is very small, in order to be able
to observe the structural differences of different vascular
models more intuitively by the printing vascular model, we
first performed a 2x scale morphological enlargement of the
vessel 3D model. In this work, we selected the fused de-
position 3D printer of EasyArts’s model areas and picked
polylactic acid as the printingmaterial [4].1e parameters of
the device are X, Y, and Z in the direction of the accuracy of
0.02mm and the maximum printable size of
160∗160∗160mm. When printing, the thickness of each
layer is 0.05–0.3mm, the nozzle size is 0.3mm, and the
nozzle temperature heating range is 170–280 degrees
Celsius.

After importing the coronary STL format file into the 3D
printer, the first step is to check the STL format file. 1e
original model may have some minor flaws in modeling, and
in order to make the model more complete, we need to check
the integrity of the STL model and then fill, smooth, rotate,
zoom, and so on as needed. Convert the STL format file to a
machine code Gcode that can be recognized by a 3D printer,
which generates a print backplane, print support, and other

(a) (b)

(c) (d)

Figure 6: 1e process of 3D printing a specific vascular model.
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operations based on the model structure. 3D printer per-
forms coronary artery model printing operations. Under the
control of the computer, the nozzle moves along the xy plane
and the molten wire in the semiflowing state is squeezed out
of the nozzle, coated on the workbench, and cooled to form a
cross section. After a layer of molding, the nozzle moves up a
layer of height and is stacked according to this reciprocating
operation to form a 3D entity until the end of the print.

4. Results

1e postprocessing step includes the removal of support,
surface polishing, and other operations.

Finally, a smooth 3D printing vascular model entity was
achieved as shown in Figure 6.

1e diameter of the printing coronary artery solid ste-
nosis section and the diameter of the normal segment were
measured using a vernier caliper (Figure 7) and compared
with the diameter of the narrow section and the diameter of
the normal section in the 3Dmodel of the coronary artery in
the software.

Comparison of 8 cases of the coronary artery CAD
model and 3D printing physical model is shown in Figure 8.

Figure 8 shows that the diameter of the printing coro-
nary artery solid stenosis section and the diameter of the
normal segment were measured using a vernier caliper and
compared with the diameter of the narrow section and the
diameter of the normal section in CADmodels. And a series
of measurements are included from Figures 9–11. It can be
seen that the diameter of the stenosis segment measured in
the 3D printing model is highly correlated with the diameter
of the stenosis segment extracted from the CAD models.
Table 1 shows that 3D printing models and CAD models of
3D measurements in stenosis and nonstenosis coronary
artery segment.

1e source of vascular data is rich, including coronary
angiography, using X-ray acquisition, intravascular ultra-
sound images acquired with ultrasound techniques, intra-
vascular optical coherence tomography images acquired via
optical correlation tomography, and magnetic resonance
angiography and computed tomography images. Vascular
data not only preserves the information on the surface of

Figure 7: Measuring process using a vernier caliper.

CAD models CAD models3D printing physical models 3D printing physical models

Figure 8: Comparison of 8 selected coronary artery CAD models and 3D printing physical models.
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blood vessels but also contains abundant information on the
internal structure of blood vessels, which is bene�cial to the
imaging diagnosis of related cardiovascular diseases in clinic
[23, 24]. However, the above imaging technology can only
present a two-dimensional �eld of vision on the screen and
cannot permit doctors to intuitively evaluate the spatial
geometry of the whole blood vessel [25].

3D printing of vascular technology in the diagnosis and
treatment of cardiovascular diseases has a very important
application value, we believe that this technology has the
following two main advantages. (1) High quality of simu-
lation: experimental studies have shown that the 3D printing

vascular technology has high simulation ability and can
accurately model the speci�c blood vessels of patients. �e
printing solid model is su¡cient for general clinical appli-
cation needs and can help doctors better understand the
details of blood vessels. (2) Preoperative planning: the 3D
model of coronary arteries facilitates the planning of pre-
operative planning for vascular implantation [26]. �e
manifested vascular model can accommodate the visual
touch of the cardiologist and measure the vascular segment
of the lesion, so as to determine the key steps of the op-
eration, select the appropriate size of the blood vessel
branch, develop the best surgical scheme, reduce the
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Figure 9: Measurement results of 3D printing models and CAD models.
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possibility of stent adherence unevenness, and greatly im-
prove the effectiveness of interventional surgery [27]. At the
same time, due to the stability of the printing material, the
solid model can also be viewed and carried by doctors at any
time [28].

5. Conclusion

In this paper, a new framework is proposed to print a 3D
vascular model with a high simulation value. Experimental
results conclude that the 3D printing vascular model based
on OCT and angiography has a high correlation with the
vascular 3D reconstruction model. 1e 3D vascular model
we printed has the characteristics of high simulation, ap-
plicability in clinical application, and the convenience of
preoperative planning, which has obvious advantages as
compared with the traditional scheme. It also gives a new
scheme for the treatment of cardiovascular diseases, which
has extremely high practical significance and good appli-
cation prospects. In the future, the following 3 aspects need
to be improved further: (1) the currently printing vascular
model is a solid entity and it is not possible to print a cavity
vessel, and it is impossible to perform a simulated inter-
ventional procedure. (2) 1e currently printing material is
polylactic acid, which is quite hard to read compared to
vascular tissue. (3) 1e time of making the blood vessel
model is still relatively long, and the manual deburring is
required in the later stage, where the automaticity needs to
be improved.
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